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Abstract: The paper presents a moving horizon H∞-control approach for the class of linear
periodically time-varying systems. By solving repeatedly online a semi-definite program subject
to linear matrix inequality constraints, the ℓ2 gain from the energy bounded external disturbance
to the performance output is minimized at each sampling instant. The resulting feedback control
strategy guarantees satisfaction of state and input constraints. A numerical example illustrates
the effectiveness of the proposed moving horizon H∞-controller.
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1. INTRODUCTION

Model predictive control (MPC), receding horizon control
(RHC), or moving horizon control (MHC) is an optimiza-
tion based control method. In its general form a control
sequence is determined by optimizing a finite horizon cost
function at each sampling instant, based on an explicit
model of the system and the current state measurement.
The first part of the obtained control input is applied to
the system. At the next sampling instant, the optimization
problem is solved again based on new measurements, and
the control input is updated. Due to its ability to explicitly
handle state and input constraints, MHC has received
much interest in both academic community and industrial
applications over the last decades, see, for example, Mayne
et al. (2000) and Qin and Badgwell (2003).

Periodically time-varying systems (or shortly, periodic sys-
tems) are of great importance for both control theory
and applications. Some well-known real-life problems that
involve control of periodic systems are magnetic satellite
control problems, see, for example, Wisniewski (1996)
and Psiaki (2001), and control of helicopters, see Arcara
et al. (2000). Furthermore, as it was, for example, re-
cently pointed out in Gondhalekar and Jones (2009), time-
invariant systems that are controlled by asynchronous in-
puts can be modeled by periodic systems. An excellent
overview on existing results for both analysis and con-
troller synthesis of linear periodic systems is provided by
the recent monograph Bittanti and Colaneri (2009).

An increasing interest in designing stabilizing MHC
schemes for periodic systems could be observed in recent
years. For example, the conservativeness of the linear
matrix inequalities (LMIs) based MHC approach Kothare
et al. (1996) for linear uncertain systems has been reduced
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in Böhm et al. (2009a) and Reble et al. (2009) for the
class of linear (uncertain) periodic systems. Gondhalekar
and Jones (2009) propose the solution of the discrete-time
periodic algebraic Ricatti equation to derive a suitable
terminal cost and terminal set for an MHC scheme that
uses a linear periodic model. Similarly, in Böhm et al.
(2009b) the terminal cost and ellipsoidal terminal set are
obtained by the solution of a semi-definite program (SDP),
which makes this approach also applicable to some classes
of nonlinear periodic systems. In particular, the MHC
approach Reble et al. (2009) is suitable for linear periodic
systems with polytopic uncertain dynamics, and thus, rep-
resents a robustly stabilizing MHC scheme. However, if the
system is affected by external disturbances, this approach
is not applicable. This motivates the derivation of a mov-
ing horizon H∞-controller suitable for periodic systems
subject to energy bounded external disturbances, which is
based on the concept of ℓ2 stability, see, for example, Khalil
(2002). In particular, the goal of this paper is to extend
the results of Chen and Scherer (2006) and Yu et al. (2009)
towards designing a novel MHC controller with guaranteed
ℓ2 performance for state and input constrained discrete-
time periodic systems. The approach relies on an SDP
subject to LMIs, which is solved repeatedly online. The
LMI conditions are derived from the dissipation inequality
used, for example, in Chen and Scherer (2006), Yu et al.
(2009), and Khalil (2002). By solving the SDP at each sam-
pling instant, a feedback matrix is calculated online such
that the ℓ2 gain from the disturbance to the considered
performance output is minimized.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the considered system class. In Section 3
a preliminary result on H∞-control of periodic systems is
discussed. Section 4 provides the main result of the pa-
per, namely a moving horizon H∞-controller for periodic
systems with guaranteed satisfaction of state and input
constraints. A simulation example in Section 5 illustrates
the effectiveness of the moving horizon approach. The
paper concludes in Section 6 with a brief summary.
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1.1 Preliminaries

Let R, R+, Z and Z+ denote the field of real numbers, the
set of non-negative reals, the set of integer numbers and
the set of non-negative integers, respectively. For every
c ∈ R and Π ⊆ R we define Π≥c(≤c) := {k ∈ Π | k ≥ c

(k ≤ c)}, RΠ := Π and ZΠ := {k ∈ Z | k ∈ Π}. For
N ∈ Z≥1, ΠN := Π× . . .×Π. Let I (0) denote the identity
(zero) matrix of suitable dimension. Further, let σ(Q)
denote the spectrum of the square matrix Q ∈ Rn×n. For
a symmetric matrix Z ∈ Rn×n let Z ≻ 0 (� 0) denote that
Z is positive definite (semi-definite). Moreover, ⋆ is used to
denote the symmetric part of a matrix, i.e.,

[

a b⊤

b c

]

= [ a ⋆
b c ].

For a vector x ∈ Rn, [x]i denotes the i-th element of x and

let ‖ · ‖ denote the 2-norm, i.e., ‖x‖ :=
√

∑n

i=1 |[x]i|2.

2. PERIODICALLY TIME-VARYING SYSTEMS

We consider the class of linear, periodically time-varying
systems which are described by

x(k + 1) = A(k)x(k) + Bu(k)u(k) + Bw(k)w(k), (1)

where x(k) ∈ R
nx(k) represents the system states, u(k) ∈

Rnu(k) are the control inputs, and w(k) ∈ Rnw(k) are the
external disturbances.

The system matrices are periodically time-varying with
time period N ∈ Z≥1, i.e. A(k + N) = A(k), Bu(k +
N) = Bu(k), and Bw(k + N) = Bw(k) for all k ∈ Z+.
The states, inputs, and disturbances are allowed to be of
periodically time-varying dimensions nx(k) = nx(k + N),
nu(k) = nu(k+N), and nw(k) = nw(k+N) for all k ∈ Z+.
Accordingly, the dimensions of the system matrices are
time-varying as well, which is illustrated in Table 1.

The consideration of periodic systems is not only moti-
vated by practical problems, such as the attitude control
of satellites (Psiaki (2001); Wisniewski (1996)) or control
of helicopter rotors (Arcara et al. (2000)), which directly
yield models with periodically time-varying dynamics. Of-
ten, in real-life problems one has to deal with asynchronous
inputs, in particular multirated and/or multiplexed inputs.
Although the original system dynamics might be time-
invariant, one way to tackle such problems is to use an
extended state vector yielding a periodic system with
periodically time-varying state, input, and disturbance
dimensions. Therefore, the extended periodic system can
be used for controller design of the original, possibly time-
invariant, system, see Gondhalekar and Jones (2009) for
details. Of course, the system description (1) also allows
for the more common case of time-invariant state, input,
and disturbance dimensions.

Assumption 1. At time k ∈ Z+, there exists β ∈ R+

such that

∞
∑

i=k

wT (i)w(i) ≤ β. (2)

For the H∞-controller design we define the performance
output

y(k) = C(k)x(k) + Du(k)u(k) + Dw(k)w(k), (3)

which is of periodically time-varying dimension ny(k) =
ny(k+N) ∀k ∈ Z+. The dimensions of the periodic output
matrices C(k), Du(k) and Dw(k) are illustrated in Table 1.

Remark 1. In practical applications usually the external
disturbances are of time-invariant dimension (i.e., nw =
nw(k) ∀k ∈ Z+). However, for generality, in this paper we
do consider time-varying dimensions, since this does not
introduce any conservativeness into the problem.

Table 1. Dimensions of system matrices.

Matrix Dimension Matrix Dimension

A(k) nx(k + 1)× nx(k) C(k) ny(k)× nx(k)

Bu(k) nx(k + 1)× nu(k) Du(k) ny(k)× nu(k)

Bw(k) nx(k + 1) × nw(k) Dw(k) ny(k)× nw(k)

Y (k) nu(k)× nx(k) K(k) nu(k) × nx(k)

X(k) nx(k)× nx(k) P (k) nx(k) × nx(k)

ci(k) 1× nx(k) di(k) 1× nu(k)

3. H∞-CONTROL OF PERIODIC SYSTEMS

The preliminary control task considered in this section is
to determine a linear state feedback law

u(k) = K(k)x(k), (4)

with periodic feedback matrix K(k+N) = K(k) ∀k ∈ Z+.
The time-varying dimensions of K(k) are illustrated in
Table 1. The feedback matrix shall be calculated such that
the dissipation inequality

V (k + 1, x(k + 1)) − V (k, x(k))

−γ‖w(k)‖2 + γ−1‖y(k)‖2 ≤ 0 (5)

is satisfied for all k ∈ Z+. Furthermore, we require that at
each time instant the state and input constraints

[x(k), u(k)] ∈ C(k) ⊂ R
nx(k)+nu(k) (6)

are satisfied. In this paper we assume polytopic constraints

C(k) := {[ξ, η] ∈ R
nx(k)+nu(k)|ci(k)ξ + di(k)η ≤ 1}, (7)

i ∈ Z[1,p], where p ∈ Z+ is the number of constraints.
The feedback law (4) renders the control inputs state
dependent, and we obtain the constraint set

X(k) := {ξ ∈ R
nx(k)|(ci(k) + di(k)K(k))ξ ≤ 1}, (8)

i ∈ Z[1,p]. Thus, if the state x(k) lies in the constraint
set X(k) at time k ∈ Z+, then both state and input
constraints (6) are satisfied at this time instant.

In the following, we chose the quadratic storage function

V (k, x) := xT P (k)x. (9)

See Table 1 for the dimensions of the time-varying ma-
trix P (k), which is positive definite for all k ∈ Z+. With
the choice of the quadratic storage function (9) the re-
maining task is to calculate time-varying matrices P (k)
and K(k) such that the dissipation inequality (5) and state
and input constraints (8) are satisfied for all k ∈ Z+. To
solve this problem, we choose a periodic matrix P (k +
N) = P (k) ∀k ∈ Z+. As in the periodic Lyapunov
lemma, see, for example, Bittanti and Colaneri (2009),
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this ansatz reduces the complexity of the given problem
to a finite number of conditions which can be stated as
LMIs. The basic idea is to calculate time-varying, robustly
periodic invariant ellipsoids defined by the matrix P (k),
which are contained in the constraint polytope (8) at the
corresponding time instant k ∈ Z+. For this, we use the
following lemma (see, for example, Boyd et al. (1994)).

Lemma 1. (Ellipsoid contained in polytope) Let 0 ≺ E ∈
Rn×n, µ ∈ R+, and wi ∈ R1×n, ∀i ∈ Z[1,p] with p ∈ Z+.

The ellipsoid E := {y ∈ Rn|y⊤Ey ≤ µ} is contained in the
polytope C := {y ∈ Rn|wiy ≤ 1, i ∈ Z[1,p]}, if and only if

wi(µP−1)w⊤
i ≤ 1, ∀i ∈ Z[1,p]. (10)

The following theorem states LMI conditions for the
calculation of P (k) and K(k) such that the dissipation
inequality (5) and state and input constraints are satisfied
for all k ∈ Z+.

Theorem 1. (H∞-control of periodic systems) Let As-
sumption 1 be satisfied for k = 0. Let X(k) ∈
Rnx(k)×nx(k), X(k) ≻ 0, Y (k) ∈ Rnu(k)×nx(k), k ∈
Z[0,N−1], and γ ∈ R+ be a feasible solution to







X(k) ⋆ ⋆ ⋆
0 γI ⋆ ⋆

A(k)X(k) + Bu(k)Y (k) Bw(k) X(k + 1) ⋆
C(k)X(k) + Du(k)Y (k) Dw(k) 0 γI






�0,(11a)

[

1
α

⋆

X(k)c⊤i (k) + Y ⊤(k)d⊤j (k) X(k)

]

�0,(11b)

for all i ∈ Z[1,p] and k ∈ Z[0,N−1], where X(N) := X(0).

Let P (k) := X−1(k), K(k) := Y (k)X−1(k) for all k ∈
Z[0,N−1], and P (k + N) := P (N) and K(k + N) := K(k)
for all k ∈ Z+. Then, with the state feedback law (4) the
following holds:

(i) The ℓ2 gain from the disturbance w(k) to the perfor-
mance output y(k) is less than (or equal to) γ.

(ii) If the initial state x(0) satisfies

γβ + x⊤(0)P (0)x(0) ≤ α, (12)

where α ∈ R+, then
a. all perturbed state trajectories are such that at

time k ∈ Z+ the state x(k) lies in the ellipsoid

E(k) := {x ∈ R
nx(k)|x⊤P (k)x ≤ α}, (13)

b. the constraints (8) are satisfied for all k ∈ Z+.

Proof 1. Part (i): We have to show that the ℓ2 gain from
the disturbance w(k) to the performance output y(k) is
bounded by γ, which is according to Lin and Byrnes (1994,
1996) the case if the dissipation inequality (5) holds for
all k ∈ Z+. Substituting X(k) and Y (k) in (11a) as defined
in the theorem by P (k) and K(k), k ∈ Z[0,N−1], we have







P−1(k) ⋆ ⋆ ⋆
0 γI ⋆ ⋆

(A(k) + Bu(k)K(k))P−1(k) Bw(k) P−1(k + 1) ⋆
(C(k) + Du(k)K(k))P−1(k) Dw(k) 0 γI






�0,

k ∈ Z[0,N−1]. By pre- and post-multiplying with the

matrix diag
(

P (k), I, I, I
)

, applying the Schur complement,
exploiting the periodicity of the occurring matrices, pre-
and post-multiplying with x(k) and its transposed, and

using the system dynamics (1), we conclude that the
dissipation inequality (5) is satisfied for all k ∈ Z+.

Part (ii-a): Consider the storage function (9). Summing
up inequality (5) and using Assumption 1 yields

V (k, x(k)) + γ−1
k−1
∑

i=0

‖y(k)‖2 ≤ V (0, x(0) + γβ (14)

for all k ∈ Z+. Since ‖y(k)‖2 ≥ 0 ∀k ∈ Z+, we conclude

x⊤(k)P (k)x(k) ≤ x⊤(0)P (0)x(0) + γβ, ∀k ∈ Z+. (15)

Thus, if (12) is satisfied, then x(k) ∈ E(k) for all k ∈ Z+.

Part (ii-b): Since the ellipsoid E(k) contains the state x(k)
at time k ∈ Z+, state and input constraints are satisfied
for all k ∈ Z+ if we can show that E(k) is contained
in the constraint set X(k) at the corresponding time
instant. Substituting X(k) and Y (k) in (11b) as defined
in the theorem by P (k) and K(k), and applying the Schur
complement yields

(ci(k) + di(k)K(k))(P−1(k)α)(ci(k) + di(k)K(k))⊤ ≤ 1

for all i ∈ Z[1,p] and (due to the periodicity of the occurring
matrices and vectors) for all k ∈ Z+. Thus, we conclude
from Lemma 1 that E(k) ⊂ X(k) for all k ∈ Z+. �

The drawback of the controller design procedure according
to Theorem 1 is its conservativeness. The derived con-
troller has to deal with the trade-off between constraint
satisfaction and disturbance rejection. This often may
lead to conservative feedback matrices K(k) and poor
control performance. If the H∞-controller is desired to
reject rather large disturbances, one has to choose a large
value of α. However, for a large α, condition (11b) restricts
the sets of feasible matrices X and Y . This often leads
to low control performance even if the actual disturbance
is very small. To overcome this problem, in the following
section we extend the results obtained so far and introduce
an H∞-control approach in a moving horizon fashion, simi-
lar to the results proposed by Yu et al. (2009) for polytopic
uncertain linear systems and Chen and Scherer (2006) for
time-invariant linear systems. The key idea is to formulate
a semi-definite program which is solved repeatedly online
based on current state measurements. Thus, the feedback
law is adjusted online and therefore allows to online deal
with the trade-off between disturbance rejection and con-
straint satisfaction.

4. MOVING HORIZON H∞-CONTROL

The conservativeness of the control approach derived in
the previous section motivates the derivation of an H∞-
controller in a moving horizon fashion, i.e. the feedback
matrices are calculated repeatedly online based on current
measurements of the system states. For this, we associate
matrices, states, and inputs, which are predicted at time
k ∈ Z+ for the future time k + j ∈ Z≥k, j ∈ Z+, by the
time index k + j|k.

The proposed moving horizon H∞-controller relies on the
following semi-definite program which is solved repeatedly
at each time instant k ∈ Z+.
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Problem 1. At time k ∈ Z+, let x(k) be the current
system state, and solve the optimization problem

minimize
X(k+j|k),Y (k+j|k),γ(k)

γ(k) (16a)

subject to

[

α − γ(k)β ⋆
x(k) X(k|k)

]

� 0,(16b)







X(k + j|k) ⋆ ⋆ ⋆
0 γ(k)I ⋆ ⋆

∆(k + j) Bw(k + j) X(k + j + 1|k) ⋆
Γ(k + j) Dw(k + j) 0 γ(k)I






� 0,(16c)







1
α

⋆

X(k + j|k)cT
i (k + j)

+Y T (k + j|k)dT
j (k + j)

X(k + j|k)






� 0,(16d)

X(k|k) − X(k|k − 1)� 0,(16e)

for all j ∈ Z[0,N−1] and all i ∈ Z[1,p], with X(k + N |k) :=
X(k|k), where (16e) is omitted for k = 0, and

∆(k + j) := A(k + j)X(k + j) + Bu(k + j)Y (k + j),

Γ(k + j) := C(k + j)X(k + j) + Du(k + j)Y (k + j).

The proposed moving horizon H∞-control strategy is given
by the following algorithm.

Algorithm 1. At each time instant k ∈ Z+, measure
the state x(k), solve the optimization problem (16), and
apply the control input u(k) := K(k)x(k), where K(k) :=
Y (k|k)X−1(k|k).

The following theorem discusses the properties of the
controller defined in Algorithm 1.

Theorem 2. (Moving horizon H∞-control) Let Assump-
tion 1 be satisfied. Suppose that Problem 1 is feasible for
all k ∈ Z+. Then, with P (k) := X−1(k|k) ∀k ∈ Z+, the
moving horizon H∞-control strategy according to Algo-
rithm 1 guarantees that the following is satisfied:

(i) The dissipation inequality

xT (0)P (0)x(0) ≥
k

∑

i=0

γ−1‖y(i)‖2 − γ‖w(i)‖2 (17)

holds for all k ∈ Z+, where γ := max{γ(j)}j∈Z[0,k]
.

(ii) The ℓ2-gain from the disturbance w(k) to the output
y(k) is less than (or equal to) γ.

(iii) The constraints (8) are satisfied for all k ∈ Z+.

Proof 2. Clearly, any solution to (16) satisfies the condi-
tions of Theorem 1. Therefore, from satisfaction of (5) we
know that

x⊤(k)P (k)x(k) − x⊤(k + 1)P (k + 1|k)x(k + 1)

≥ γ−1(k)‖y(k)‖2 − γ(k)‖w(k)‖2 (18)

holds for all k ∈ Z+, where P (k+1|k) := X−1(k+1|k) for
all k ∈ Z+. Due to condition (16e), which is satisfied for
all k ∈ Z≥1, we have P (k +1|k) � P (k +1) for all k ∈ Z+,
and therefore,

x⊤(k)P (k)x(k) − x⊤(k + 1)P (k + 1)x(k + 1)

≥ γ−1(k)‖y(k)‖2 − γ(k)‖w(k)‖2 (19)

for all k ∈ Z+. Summing up yields

x⊤(0)P (0)x(0) − x⊤(k)P (k)x(k)

≥
k

∑

i=0

γ−1(i)‖y(i)‖2 − γ(i)‖w(i)‖2. (20)

With γ = max{γ(i)}i∈Z[0,k]
, we have that γ ≥ γ(i) and

γ−1 ≤ γ(i) for all i ∈ Z[0,k]. Thus,

x⊤(0)P (0)x(0)≥
k

∑

i=0

γ−1‖y(i)‖2 − γ‖w(i)‖2

+ x⊤(k)P (k)x(k). (21)

Since P (k) ≻ 0 ∀k ∈ Z+, statements (i) and (ii) follow.

According to the proof of Theorem 1, condition (16d)
implies that E(k) ⊂ X(k) for all k ∈ Z+, where E(k)
is defined as in (13). Applying the Schur complement
to (16b) yields

x⊤(k)P (k)x(k) ≤ α − γ(k)β. (22)

Thus, x(k) ∈ E(k). Since Assumption 1 holds, it follows
from (19) that

x⊤(k + 1)P (k + 1)x(k + 1) ≤ x⊤(k)P (k)x(k) + γ(k)β

for all k ∈ Z+. Hence,

x⊤(k + 1)P (k + 1)x(k + 1) ≤ α ∀k ∈ Z+, (23)

which implies x(k + 1) ∈ E(k + 1) ∀k ∈ Z+. We finally
conclude that x(k) ∈ E(k) ⊂ X(k) for all k ∈ Z+, which
proofs statement (iii). �

The proposed controller allows to online adjust the feed-
back matrices at each time instant. In the case of small dis-
turbances, this allows to improve controller performance,
whereas in the presence of rather large disturbances con-
straint satisfaction is achieved by paying the price of lower
performance, i.e., the moving horizon H∞-controller allows
to online deal with the trade-off between performance and
constraint satisfaction.

To derive our result, we made use of Assumption 1, which
was required to be satisfied at each time instant. This
means, that at each time instant we assumed the future
disturbance energy to be bounded by β. However, in the
case of rather large, unforeseen disturbances, Assump-
tion 1 might be violated and feasibility of Problem 1 might
be lost. As discussed in Chen and Scherer (2006), this
makes it necessary to be prepared to switch to alterna-
tive control strategies if the system is affected by rather
larger disturbances. Alternatively, one could pay the price
of violating the constraints, which is however often not
possible or acceptable in practical control problems. At
this point, it is important to notice that any H∞-controller
which aims at guaranteeing satisfaction of state and input
constraints at all time instants, requires the assumption of
the disturbance energy to be bounded.

In the following section a numerical example illustrates the
effectiveness of the proposed moving horizon H∞-control
scheme.
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Remark 2. Condition (16e) is required since we consider
periodic systems with time-varying dimensions. In the
time-invariant case, condition (16e) can be replaced by
the less conservative condition (11c) in Chen and Scherer
(2006) or, alternatively, by (24c) in Yu et al. (2009).

5. SIMULATION RESULTS

The moving horizon H∞ controller is applied to a two-
dimensional example system with period N = 2 given by
the matrices

A(0) :=

[

0.9 0
0 0.8

]

, A(1) :=

[

1.2 0.4
0.2 0.8

]

, (24a)

Bu(0) :=

[

0.3
1.5

]

, Bu(1) :=

[

1.8
1.1

]

, (24b)

Bw(0) :=

[

0.2
0.4

]

, Bw(1) :=

[

0.8
0.4

]

, (24c)

C(0) := [1 0] , C(1) := [1 0] , (24d)

Du(0) = Du(1) = Dw(0) = Dw(1) := 0. (24e)

The example system is subject to hard input constraints

−1 ≤ u(k) ≤ 1, ∀k ∈ Z+. (25)

Thus, p = 1 and c1(0) = c1(1) := [0 0] and d1(0) =
d1(1) := 1. The eigenvalues of the monodromy matrices
Φ(0) := A(1)A(0) and Φ(1) := A(0)A(1) are σ(Φ(0)) =
σ(Φ(1)) = [1.1856 0.5344]. Hence, the considered example
system is unstable, see, for example, Bittanti and Colaneri
(2009) for stability analysis of periodic systems.

For the simulation with the proposed moving horizon H∞-
controller we have chosen α = 300, β = 15, and the
initial condition x(0) = [0 0]⊤. The system is affected

by the disturbance signal w(k) =
√

3 for all k ∈ Z[5,9]

and w(k) = 0 for all k ∈ Z[0,4] and all k ∈ Z>9,

yielding
∑∞

i=0 ‖w(i)‖2 = β. The obtained simulation
results are depicted in Figure 1. The controller reacts on
the disturbance and steers the system back to the origin
without violating the input constraints. The reaction on
the disturbance signal is also nicely depicted by the plot
of the evolution of the storage function.

Current research investigates the effect of the novel con-
trol approach on the magnetic satellite attitude control
problem described in Psiaki (2001), and its performance
with respect to existing alternative control schemes for the
considered satellite attitude control problem.

6. CONCLUSIONS

We presented a moving horizon H∞-control scheme for
linear periodically time-varying systems subject to exter-
nal disturbances. The approach is based on the repeated
online solution of a semi-definite program subject to LMI
conditions. At each time instant, a feedback matrix is
calculated such that the associated control law minimizes
the ℓ2 gain from the energy bounded disturbance to the
performance output, while state and input constraints are
satisfied. A simulation example illustrated the effectiveness
of the proposed controller.
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Fig. 1. Plots of performance output y, control input u,
disturbance signal w, and storage function V .
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